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SUMMARY 

Stream function-vorticity finite element solution of two-dimensional incompressible viscous flow and 
natural convection is considered. Steady state solutions of the natural convection problem have been 
obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or 
iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element 
discretization and a displacement of the appropriate discrete equations. Solution is obtained by 
Newton-Raphson iteration of all equations simultaneously. The method then appears to give a steady 
solution whenever the flow is physically steady, but it does not give a steady solution when the flow is 
physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a 
degree of economy over primitive variable formulations. Physical results are given for the square cavity 
convection problem. The paper also reports on earlier work in which the most commonly used 
boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated 
solution procedures were attempted with very minimal success. 
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1. INTRODUCTION 

Most finite difference studies of incompressible viscous flow and convection in two dimen- 
sions have used the stream function-vorticity formulation. This formulation has the advan- 
tage of satisfying mass conservation exactly and reducing the number of simultaneous partial 
differential equations by one (from three to two for uncoupled viscous flow alone). With the 
finite element method however the majority of studies have used the primitive variable 
approach. In one of the first finite element works Taylor and Hood',* examined both forms 
of approach, but dropped stream function-vorticity in favour of primitive variables. Primitive 
variables were also chosen by Oden and W e l l f ~ r d , ~  and then by Kawahara et aL4 and 
Gartling and Beckers amongst others. Stream function-vorticity was chosen in the early 
works of Cheng6 and Baker.7 

The difficulty with the stream function-vorticity approach is that, of two second order 
partial differential equations, one, a Poisson equation for stream function, has two boundary 
conditions instead of the one required, and the other, the vorticity transport equation, has no 
boundary condition. Finite difference workers have for long met this difficulty by defining 
boundary vorticity from the variation along the boundary normal of the stream function field 
determined in a previous iteration. We shall call this the boundary vorticity formula method. 

* Present address: PAFEC Ltd., Strelley Hall, Nottingham, U.K. 
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Finite element workers who have adopted the stream function-vorticity formulation have 
followed the same procedure. This is unfortunate because the effect of the boundary vorticity 
formulae appears to be highly dubious: this is discussed further in Section 3 of this paper. 
Further it happens that the finite element discretization naturally allows the difficulty to be 
avoided. This fact was apparently first pointed out in the literature by Campion-Renson and 
Crochet? and is also illustrated further in this paper. The difficulty can also be avoided by 
combining the two equations to give one fourth order equation. This idea has been exploited 
by Olson and Tuann,' who use plate bending elements and call the method simply the stream 
function approach. 

This paper describes the modelling of natural convection using the stream function- 
vorticity formulation and the finite element method and avoiding the boundary vorticity 
difficulty. For natural convection, in addition to the viscous flow equations which the above 
cited references have been concerned with, there is a further second order equation for the 
transport of heat. The heat transport in turn drives the flow through buoyancy. Previous 
finite element studies of natural convection through primitive variables have included the 
work of Gartling," Kawahara et al.? Taylor and Ijam," Young et at.,'2 Piva and DiCarlo13 
and Zienkiewicz et all4 The stream function-vorticity approach has previously been adopted 
in a finite element context at low Rayleigh numbers by Tabarrok and Lin." 

Methods of solution of the coupled partial differential equations can be broadly divided 
into two categories: segregated approaches, where each equation is solved in rotation with 
some form of relaxation of variable values in the loop, and the simultaneous approach where 
a Jacobian involving all equations and all variables can be formed. The general attraction of 
the segregated approaches is the smaller storage requirement. Following the paper of 
Tabarrok and Lin,15 and because the most available computer was a minicomputer of rather 
limited storage at the time, this author originally attempted segregated approaches. Success 
was minimal, but because the experience may bear upon attempts that other workers might 
make, the results are briefly described in Section 3 of this paper. This section also contains a 
brief discussion of the boundary vorticity formula method which was adopted initially. In 
contrast to the segregated approach, the simultaneous approach with the Newton-Raphson 
method and avoidance of the boundary vorticity difficulty worked very well. The formulation 
is therefore given first in Section 2 as applied with this method. The implementation of the 
method, computational questions, and results on the performance of the method are given in 
Section 4. The physical results are given and discussed in Section 5. 

2. FORMULATION 

The derivation of the stream function-vorticity formulation from the primitive equations for 
transport of momentum and energy and for continuity under the incompressible assumption 
will not be repeated here since it is given in many other places. If non-dimensional 
temperature, co-ordinates, and time scale are defined by 
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where T,, and T, are suitable reference temperatures, d is a reference distance, and a! is the 
fluid thermal diffusivity, then non-dimensional stream function and vorticity are 

and the non-dimensional equations for natural convection under the usual Boussinesque 
approximation are 

O=V2W'+R (3c) 

where P and R are the fluid Prandtl number and the problem Rayleigh number: 

V 

a! 
p=-  

gP(T,- TJd3 R =  
Va! 

where v is the fluid kinematic viscosity (or viscous diffusivity), p is the fluid thermal 
expansion coefficient, and g is the acceleration due to gravity. 

This non-dimensionalization is that suggested by de Vahl Davis et ~ 1 . ' ~  for comparison of 
results of viscous flow computations. An alternative choice, to which we shall refer in Section 
5 ,  is to base the time scale on the viscous rather than the thermal diffusivity: 

V 
7 , z - t  

d2  

The dimensionless velocity-related variables are then 

and equations (3) are replaced by 

0 = V24" + n, 
where G is the Grashoff number 

(4) 

which is independent of the thermal diffusivity of the fluid. 



                         t

The three dependent variables are expanded in the standard finite element way: 

cp = aT@ = aTff 
where cf, stands for any of 8, Q, or T and a is the vector of shape functions. The Galerkin 
discretization is then applied to equations (3) ,  i.e. the equations are projected onto each of 
the shape functions. The terms in V2 incorporate gradient type boundary conditions: Green's 
theorem gives 

(7) 
acp 

OL - ds (a, V2aT)cr, = -(Va. VaT)@+ 
an 

where the brackets denote integration over the problem region, the last integral is over the 
boundary, and n is the outward normal. For matrix rows for which the test function a, 
pertains to a node which is not on the boundary the last term is zero. For rows for which the 
test function pertains to a node on a segment of boundary for which a gradient boundary 
condition applies, the prescribed gradient is substituted in the last term. For nodes on 
segments of boundaries where fixed value boundary conditions apply the appropriate 
equation of (7) becomes replaced as we discuss below. Equations (3) then give 

Me = -K6 - a(T,6) + b(8J (84 
M a =  -PKa--a(T, fk)+PRC$+Pb(Q,,) 

0 = -KY + M a +  b(qir,) 

where the volume integrals are 

and b is the boundary integral 

b(@,) = I a&,@ ds 
S 

For the Newton-Raphson method, the left-hand sides of (8) are replaced by the negative of a 
set of residuals, re,rn, and r,: 

re = K6 + a(*, 0) - b(8J 
rn= PKa+a(?V, a)-PRC6-Pb(On) 
ry, = - M a  + K Y  - b(T,) 

We now discuss the application of the boundary conditions. First, the fixed value 
conditions. If node i is on such a segment of boundary for variable a, the residual ra,i 
defined by (10) is deleted and replaced by, 

- 
ra,L = Qi - @, (11) 

6i being the prescribed value. This treatment applies to the prescribed temperature 
boundaries. It also applies to the constant stream function condition for an impermeable 
boundary, which means the entire boundary for natural convection in an enclosure. 
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Next, the gradient boundary conditions. For adiabatic segments of boundary the line 
integral b,(6,) in the residual re,,, equations (10a) is zero. There remains the stream function 
gradient condition which occurs in this formulation in place of any condition on the vorticity. 
The appropriate residuals ra,l are simply deleted and replaced by the residuals rT,l which, as 
already noted are displaced by residuals of type (11). Thus the residuals rq,l of type (1Oc) for 
boundary nodes are simply shifted in position in the system (and a change of sign is applied). 
For the no slip condition, the line integral bl(Tn) is set to zero. 

For the Newton-Raphson method, the iteration form is 

(12) g k + l  = g k  ---Irk 

k being the iteration count, where 
g = (or aT 9 T T  

and 

and 3 is the system Jacobian matrix: 

In practice we interchange the ordering in the & and r vectors so that J consists of 3 x 3  
blocks each referring to a particular pair of nodes. For a node i which is not on the b ~ ~ ~ ~ ~ a ~ ~  
the general block Jli is 

where 

A, (@I = (al, (@,aT@, &ar - @,aT@, d,~u,)> (14) 

The residuals can be conveniently found by multiplying a matrix consisting of the (1, I), 
(2, l) ,  (2,2), ( 3 , 2 )  and (3 ,3)  elements of each Jl, block times the current J vector. 

Where constant value boundary conditions apply and the residual is defined by (11) the 
Jacobian matrix row is unit diagonal. Where specified gradient conditions apply the approp- 
riate Jacobian rows are unaffected, except that of course the above described displacement 
must be applied. Thus for a node i on e.g. an adiabatic, impermeable, and rigid section of 
boundary the Jacobian matrix block J ,  becomes 

Kij +A,(*) 0 -A,(@) 
Mij -Ki, 

0 0 6ij 

This completes the formulation for the Newton-Raphson method, but one further point 
should perhaps be considered. Since only two of equations (8) are non-linear, in principle 
only a 2 X 2 Jacobian should be needed rather than a 3 x 3 system. Equation (8c) can be used 
to substitute for either or 9 in (8a) and (8b). If for example the r and C vectors are 
reduced to 

T T T  
I: = (re G1) 
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and 

5 = (0 9 ) T  

then the Jacobian is reduced to 

-A(@) 

with the subsidiary relation 

0 = JW1K9 

used at each iteration. However we now have the triple products Kil -lK and A,(T)n -IK. 
In forming these there will presumably be considerable fill-in, requiring substantial addi- 
tional Jacobian blocks. This approach therefore would seem to be unlikely to lead to any 
advantage. 

3. FIRST ATTEMPTS: SEGREGATED APPROACHES AND 
BOUNDARY FORMULAE 

At first, following Tabarrok and Lin,ls attempts were made to achieve a steady state solution 
by converting (8) to three Poisson equations: 

K0 = -a(@, 0) + b( 0,) 

PKa = -a(@, a) + PRC6 + b(R,) 
K 9  = M a  + b(T,) 

and attempting to find a solution by iteration. Here each equation is solved in turn for 0, a, 
and 9 using right hand sides computed from the last previously determined values denoted 
by bars over the symbols. The attraction of such an approach is that only a single inverse 
factorization of one symmetric matrix K need be made, the remaining computing consisting 
of multiple right hand side formation and multiplications. Further the right hand side 
formations can be done at element level so that the only major storage required is that for 
the inverse factors of K. However this approach was found to work only for very low 
Rayleigh numbers, and under-relaxation of variable values in the loop was found to be 
necessary to prevent instability. Under-relaxation factors as small as 0.1 or 0.2 were 
sometimes required. No need for under-relaxation was mentioned by Tabarrok and Lin. For 
Ra = lo4 some wander in the results could not be eliminated. The iteration form was thus 
considered to be intrinsically unstable for any Rayleigh number giving significant convection. 

To try to ameliorate this instability the next step taken was to incorporate the velocities 
into the equation matrices, so that (16a) and (16b) become 

(K+A(@))0= b(0,) (174  
(PK+A(Y))a=PRC8+b(Rn) (17b) 

The matrices for the solution of (17a) and (17b) must now be re-formed and re-factorized at 
each iteration (and they are asymmetric). Although there was some improvement in stability 
over the previous approach, the rate of convergence in terms of computation time was much 
the same. For Ra = lo4 an under-relaxation factor of 0.3 was still required, and it was not 
considered worthwhile to try higher Rayleigh numbers. 
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At this stage, again following Tabarrok and Lin and others, the stream function gradient 
or no-slip boundary condition was being treated by a boundary vorticity formula method. 
Apart from the convergence limitation discussed above, there was considerable difficulty 
with this boundary condition. Before describing this we digress to a discussion of the 
boundary vorticity methods in general, as they have been widely used. 

The methods employ a family of approximate formulae to define vorticity boundary values 
from the stream function field determined in a previous iteration.17 The simplest and most 
commonly used formula is derived by expanding the stream function in a Taylor series along 
an inward normal from a wall: 

$l=$O+h-- /  a$ +----I h2a2$ +-----I h3a3$ +...  
ax n 2 ax2 n 6 ax3 n 

Where subscript 0 indicates the point on the wall and subscript 1 indicates an interior point. 
Using the no-slip condition on the wall 

and the constancy of $ along the wall which gives 

we have 

The formula is obtained by truncating (18) after the first term on the right hand side. More 
elaborate formulae, in which the error is reduced by one order by employing two internal 
values of stream function or one value of stream function and one of vorticity, have also 
been used. The formulae are commonly used with what are termed ‘second order’ finite 
differences, i.e. finite difference formulae for which the error is second order in h. These 
formulae correspond to what are termed ‘first order’ finite elements, i.e. linear interpolation. 
From a finite element viewpoint it is evident that in the solution of these formulae for stream 
function, the value of will have been determined on the basis that $ varies linearly 
between $* and GI. To define a boundary vorticity by drawing a pure quadratic to then 
seems artificial and likely to lead to error. To make the point more clearly, it is evident that 
the boundary vorticity value obtained is strongly dependent on the point on the linear 
variation to which the quadratic is drawn. Remembering that perfect satisfaction of the 
boundary conditions requires the linear variation to have a slope of zero makes the 
procedure seem to have even less sense. Such a procedure would seem to be approximately 
valid with linear elements (or the corresponding finite difference formulae) only if the 
quadratic extends over a number of elements (or finite difference points), in which case of 
course the error of first order in h in (18) will be enhanced. 

What finite element work there has been using the stream function-vorticity approach has 
used formula (18) or a similar one. The early work of Cheng6 on flow in pipes used this 
formula with first order elements as did Tabarrok and Lin. Baker7 used the more elaborate 
formula which employs an internal vorticity value, but again apparently mainly with first 
order elements. (Baker also used second order elements; we discuss these next). 
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For the attempts at solution with the methods of equations (16) and (17) the above simple 
formula was used to define boundary vorticities, but with second order elements instead of 
the first order elements used by Tabarrok and Lin. However it was found that boundary slip 
velocities were very large: up to 50 per cent of mean velocities for Ra = lo3 and worse for 
Ra = lo4, and clearly the boundary condition was not being satisfied at all. The reason is that 
the solution for obtained from (16c) in an element adjacent to the boundary results from Q 
throughout this element. In a second order element only a constant value of a2i,!J/an2 is 
allowed along a normal. The value obtained for this in the solution of (16c) corresponds to 
some average of Q along the normal after allowance is made for the second derivative in the 
perpendicular direction. To feed this value back as wall vorticity will lead to gradual 
progression from the true solution, particularly as the most rapid variation of vorticity in the 
problem occurs adjacent to the wall. Presumably if the order of element used were increased 
the error would gradually diminish. No improvement would be expected from changing to 
the more elaborate wall formulae on the other hand as long as the order of element remains 
the same. 

Finally with these approaches an attempt was made to satisfy the gradient condition 
iteratively. Since increases in both first and second derivatives of stream function at the wall 
change internal values in the same direction, it is possible to guess at a change of boundary 
vorticity used in the input to the solution of (16b) or (17b) to give a certain change of stream 
function boundary gradient in the following solution of equation (16c). With under- 
relaxation and sufficient iteration, it was found to be possible to bring the boundary slip 
velocities down to around 5 per cent of the mean velocity. However, this is not an easy 
method of achieving a solution because there are now two nested iteration loops which tend 
to interact to make convergence difficult unless the inner loop is allowed to fully converge at 
each step of the outer loop. Also there remained a slight wander at R a = 1 0 4  which 
discouraged any attempts at higher Rayleigh numbers. 

In contrast to the results of these approaches, the Newton-Raphson method, as outlined in 
the previous section, was found to work very well, as described in the next sections. 

4. SOLUTION IMPLEMENTATION 

All the results given in this paper were obtained with the Newton-Raphson method as 
outlined in Section 2. An isoparametric program package MANFEP" was used as a 
computational basis. This provides triangular Lagrangian elements with from first to fourth 
order interpolation, and in-core solution by the Zollenkopf l9 sparse matrix method. The 
latter involves a 'near-optimal' elimination sequence (selection based on minimum branches), 
separate simulation, reduction, and factor multiplication stages, and linked-list matrix 
element storage. For this work the solution routines were adapted to provide block sparse 
processing, i.e. each node-node block of 3 X 3 elements is stored and processed contiguously, 
and the linked-list indexing applies to the blocks rather than the elements. For each problem 
mesh the simulation step needs to be performed only once, i.e. it is not repeated for each 
Newton-Raphson iteration. The solution processing was performed in single precision (i.e. 4 
bytes per number). 

For Rayleigh numbers of lo3, lo4 and 10' in the square cavity problem of the next section, 
a solution could be obtained starting from scratch, i.e. all variables zero except for the 
boundary fixed temperatures. For the first two of these Rayleigh numbers, this took 4 or 5 
Newton-Raphson iterations. For the Rayleigh numbers of lo5, lo6 and lo7, solutions were 
usually obtained starting from the Rayleigh number one factor of 10 smaller, and this again 
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took 4 or 5 iterations. Convergence in practice meant that the residuals were brought to zero 
to machine precision: convergence is extremely rapid close to the solution. Convergence at 
the highest Rayleigh numbers and small Prandtl numbers is discussed further in the next 
section. 

For a third order, 72 triangular element, 19 x 19 total nodes, problem, computing time was 
8 seconds per iteration o n  an IBM360-195. When communication to this machine broke 
down, computing was continued on a Prime 400 multi-user minicomputer with 384 K bytes 
real store and a virtual system with a 128 K byte addressing space. Because of the limited 
page size it was found to be essential to rearrange the storage. The Zollenkopf ‘near-optimal’ 
elimination sequence was replaced by a frontal sequence and storage was rearranged so that 
blocks in processed block rowslcolumns were stored adjacently and in processing sequence. 
Thus, while still programmed as an ‘in-core’ solution, the virtual system automatically 
produces some of the effect of a frontal method where matrix factors are written to disk. 
Time per iteration on the Prime was 72 minutes, about twice as great as expected from the 
usual ratio of speeds of the machines, 25, on account of the extra fill-in of the frontal 
sequence, and the lower efficiency of the Prime for large programs. Maximum virtual store 
used for matrix storage was about 750 K bytes for the 28 x 19 mesh. The upper limit on total 
program store available on the Prime, 1 M byte, was not reached with the meshes reported 
on in the next section but clearly little expansion would be possible without converting to a 
fully frontal method. 

4. RESULTS AND DISCUSSION 

Results have been obtained for the problem of a square cavity with isothermal vertical walls 
at different temperatures and horizontal adiabatic walls. This problem has been proposed by 
de Vahl Dvis et a1.I6 as a standard for comparing different numerical methods for fluid flow 
and convection. For all the computations a rectangular mesh was generated from a set of x 
co-ordinates and a set of y co-ordinates and each rectangle divided into two triangular 
elements. The co-ordinate sets however were varied according to the nature of the solution 
expected. First results were obtained for air, Pr = 0.71, and a range of Rayleigh numbers. 

At the outset it was assumed that at least second order interpolation would be necessary, 
since with first order interpolation the two boundary conditions on stream function would 
require the stream function to be zero throughout the elements adjacent to the boundary. 
Starting with the lowest Rayleigh number of lo3, computations were made with second, 
third, and fourth order interpolation. The results for Nusselt number shown in Table I 
suggest that at least third order interpolation should be used. 

In the sequence of powers of 10 in Rayleigh number, the value of lo4 is that for which 
there is substantial convection in relation to conduction, i.e. all terms of the equations are 
having effect, but yet the action if fairly distributed over the volume of the enclosure. For 
lower numbers heat transfer is conduction dominated, while for higher numbers the action is 
concentrated close to the boundaries. Therefore this is the most useful Rayleigh number at 
which to examine the effect of variation of mesh size. Results are shown in Table 11. 
Generally the meshes were made somewhat finer towards the boundaries. As seen, quite 
good results were obtained for quite coarse meshes. The table also demonstrates the 
desirability of having somewhat more nodes in the horizontal direction than in the vertical 
direction. It is noticeable that the Nusselt numbers exhibit a progressive shift with increasing 
mesh refinement whereas the central stream function values seem to fluctuate randomly 
within a constant range. 
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Table I. Mean Nusselt number for 
Ra = lo3, Pr =0.71, and different 
approximation orders and meshes. 
For each mesh total number of 
nodes is given in each direction; 
nodes are equally spaced except 
for mesh marked *, for which in- 
ternal primary node co-ordinates 
are 0*1,0.3,0*5,0.7,0-9. In all 
cases central stream function 

value, &=-1.17 
- 

Order Mesh N u  

2 13x13 1.125 
2 19x19 1.120 
3 13x13 1.1136 
3 19x19 1.1155 
3 19X 19" 1.1165 
4 17x17 1.1160 
4 21x21 1.1162 

By contrast to the effect of change of mesh size, the change from third to second order 
interpolation for the same number of total nodes shows a much larger change in Nusselt 
number (last line of Table 11). This confirms the suggestion of the results for Ra = lo3 that at 
least third order interpolation should be used. This is understandable in terms of the degree 
to which equation (3c) can be satisfied: while at least second order interpolation €or stream 
function is required to give acceptable satisfaction of this equation within an element for any 
non-zero vorticity, at least third order interpolation is required if the vorticity varies rapidly, 
which is particularly the case near a hot or cold wall in this problem. All further computa- 
tions in this work were made with third order interpolation. 

For the higher Raylejgh numbers of lo', lo", and lo7, results for the quantities of 
principal physical interest are shown in Table 111. An idea of the sensitivity of these results to 

Table 11. Central stream function, &, and mean 
Nusselt number, Nu, for Ra = lo4, Pr = 0.71. 
Total number of nodes given in horizontal x 
vertical directions. 28 X 19 meshes are those on 

lines 2 to 4 of Table IV 
- 

Order Mesh 4' Nu 

3 13x 10 
3 13 x 13 
3 16X 13 
3 16x 16 
3 19X 16 
3 19x 19 
3 22x 16 
3 22x 19 
3 28X 19-(2) 
3 28x 19-(3) 
3 28X19-(4) 
2 19x 19 

-5485 
-5.062 
-5.086 
-5,087 
-5.077 
-5.074 
-5.084 
-5.081 
-5.075 
-5.081 
-5.091 
-5.07 

2.217 
2.222 
2.225 
2.227 
2.231 
2.232 
2.237 
2.238 
2.241 
2.241 
2.242 
2.310 
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Table 111. Central and minimum stream function values, & and &, location 
of minimum, mean Nusselt number, and maximum vertical velocity on the 
horizontal mid-line and its distance from the vertical wall, for air (Pr = 0.71) 
and range of Rayleigh numbers. Meshes 22 X 19 for Ra = lo5 and 10"; 

28 x 19 (line 6, Table IV) for Ra = lo7 

lo5 -9.10 -9.64 (0*28,0.60) 4-50 70.0 0.05-0.07 
10" -16.4 -16.9 (0.14,0*55) 8.77 222 0.037 
lo7 -29.3 -30.3 (0-08,0*57) 16-5 710 0.022 

mesh fineness and to the concentration of mesh fineness in different regions is given in Table 
IV. For example, in comparison with the mesh of line 1, that of line 2 has a closer 
distribution of x co-ordinates over the main region, while that of line 4 has a finer 
distribution close to the isothermal walls. For Ra = lo5, the peak in vertical velocity 
distribution on the horizontal mid-line is sufficiently broad that the location of the maximum 
is somewhat mesh dependent although the value is essentially unchanged, as shown in Table 
111. 

For Ra = lo7 it was found to be essential to have the width of the elements adjacent to the 
isothermal walls no greater than 0.03, and thus comparisons could only be made amongst 
meshes of 28 x 19 nodes with the present in-core solution program and computer. Within this 
limitation the results were all consistent with those given in Table 111. 

Table V compares the results with those given in Table I of Reference 20 in the cases 
where the Rayleigh numbers are the same. Curiously, for Ra = lo6, the present results are in 
accord with those of Mallinson and de Vahl Davis on maximum stream function value but 
not on Nusselt number, while comparing with the results of Jones the situation is the other 
way round. Again for Ra = lo4, the agreement with Jones is excellent for Nusselt number 
but not quite so good for stream function. Note that the discrepancy in the latter values is 
larger than the variation shown in Table 11. 

Contour plots for temperature, stream function and vorticity for these parameter values 
are shown in Figure 1. The vorticity plots generally show a cental negative area (rotation in 
the direction of the main circulation) separated by a zero contour from positive vorticity 
regions adjacent to the walls. By Ra = lo4 there are two distinct valleys of vorticity in the 
central area; with increasing R a  these move apart leaving a central area with little action. By 
Ra = lo5 a positive vorticity area (rotation against the main circulation) has appeared in this 
central area on each side. This presumably is created, on the cold side for example, by the 
viscous action of the reflected updraught on the interior side of the wall downdraught. The 
further islands of positive vorticity that appear for Ra = lo7 are of sufficiently small vorticity 

Table IV. Illustration of sensitivity to mesh grading for Pr = 0.71 and Ra = lo5 and 10". Co-ordinates 
given are those of the internal primary nodes (i.e. triangle vertices) within half of the cavity 

Total nodes Ra=105 - Ra=106 __ 
(x x Y )  x-co-ordinates y-co-ordinates JI, JIrn Nu JIc JIm Nu 

1 22x 19 0.05,0.15, 0.32 0.1,0.3,0.5 -9.103 -9.642 4.497 -16.43 -16.87 8.774 
2 28x 19 0.05,0.15, 0.25,0*40 0.1,0.3,0.5 -9.112 -9.626 4.497 -16.38 -16.85 8.773 
3 28X 19 0~05,0~12,0~20,0~35 0.1,0.3,0.5 -9.106 -9.630 4,498 -16.40 -16.81 8.772 
4 28x 19 0~03,0~07,0~15,0~32 0*1,0.3,0.5 -9.102 -9.641 4.512 -16.44 -16.84 8.769 
5 28x 19 0.03,0.O7,0.15,0~32 0.07,0.2.5,0.5 -9.092 -9.657 4.511 -16.51 -16.85 8.767 
6 28 x 19 0.03,0.08,0.18,0~35 0.06,0.2,0.5 Used for Ra = lo7: Table I11 
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Table V. Comparison of stream function and Nusselt number values 
with those of Jones and Mallinson and De Vahl Davis. Meshes (1) and 

(2) are those of lines 1 and 2 of Table IV 

lo4 This work 28X19-(2) 5-08 2.241 
Jones 45 x45 5.15 2.242 

10" This work 22X19-(1) 16.4 16.9 8.77 
Jones 45 x 45 17.6 18.1 8.77 
M. and De V. D. 51x51 17.1 8.12 

magnitude (order of 200) that they probably do not represent real positive circulation 
regions, i.e. their appearance really means that the vorticity is essentially zero over the 
interior region. 

The solution for Ra=107 was obtained by starting from the solution for Ra=106. 
Starting from the Ra = lo7 solution, a solution for Ra = 10' was not obtainable; the highest 
Rayleigh number for which a solution was obtained was 2 X lo7. An attempt to achieve a 
solution for Ra = 5 X lo7 starting from the Ra = 2 X lo7 solution did not converge. However, 
it was felt that solutions for slightly higher Rayleigh numbers could probably be obtained if 
the change in Ra were divided into smaller steps or if other means, e.g. an incremental 
method, were adopted. 

It is assumed that the limit on the ability to obtain a solution arises from the closeness of 
the transition to the turbulent regime. An attempt to take a large step in Rayleigh number 
near this boundary may take the variables across the boundary in the iteration process at 
which point of course convergence will be lost. Experimentally turbulence is found to set in 
when the Rayleigh number is in the region of 

The final investigation made was sensitivity to variation of Prandtl number. Generally 
solutions were sought for Prandtl numbers of and lo2 using solutions for the same 
Rayleigh number and Pr = 0.71 for starting values. We discuss first the physical results 
obtained and then the question of limits to the ability to obtain a solution. 

Table VT shows the results. In comparing results for different Prandtl numbers it should be 
remembered that the stream function and velocity values are defined on the thermal 
diffusivity time scale, equation (1). The corresponding values measured on the viscous time 
scale are obtained by dividing by the Prandtl number (equation (5)) .  However the results 
indicate that the choice of thermal time scale and Rayleigh and Prandtl numbers as 
independent parameters is the most appropriate for classifying the results. The principle 
dependence is then on Rayleigh number. Further the position of the maximum in the profile 
of vertical velocity on the horizontal mid-line, which is independent of choice of non- 
dimensionalization, is seen to depend to an extent on Rayleigh number alone. 

However the situation is different when it comes to considering the boundary between 
laminar and turbulent regimes. We assume that this boundary or the closeness of it provides 
the only limit to the ability to obtain a solution. Since it is the transport of momentum, not 
thermal energy, which governs the physical stability limit, it is the viscous time scale which is 
relevant for this question. When the two velocity-determining equations are written with the 
viscous time scale non-dimensionalization, equations (6b) and (6c), the only parameter to 
enter is seen to be the Grashoff number, the parameter which is independent of the thermal 
diffusivity, in the temperature gradient 'driving' term. Thus for a fixed temperature field a 
reduction in Prandtl number has the same effect as an increase in Rayleigh number. 
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104 
10’ 
1 o6 
107 

Table VI. Comparison of results for different Prandtl numbers. Third set of columns is maximum 
vertical velocity on the horizontal mid-line, and its distance from the wall 

I I I 

1.957 2.241 2.27 -4.65 -5.08 -5.18 15-2 (0.15) 19-8 (0-12) 19-8 (0.12) 

8.77 9.17 -16.4 -18.7 222 (0.037) 246 (0.05) 
3.25 4-50 4.69 -7.19 -9.11 -10.9 41.6 (0.08) 70.6 (0.07) 73.1 (0.07) 

16.5 -29.2 710 (0.022) 

In accordance with this consideration it was found that the Grashoff number alone was 
indeed a rough guide to the limit to the ability to obtain solutions. Since however we are 
dealing with a coupled problem, not a fixed temperature field, a closer examination needs to 
be made. Comparing the results in Table VI for Ra = lo5, Pr = lo-* with those for Ra = 
lo7, Pr = 0.71, when the velocity values shown are converted to the viscous-based non- 
dimensionalization they become 4160 and 1000, respectively. These values might also be 
called local Reynolds numbers. Presumably these values are representative of the relative 
scale of the two velocity fields as a whole, so that the first case is closer to the boundary of 
the turbulent regime than the second. The relative ease of obtaining the two solutions was 
found to be in accord with this: the solution for Ra = lo7, Pr = 0.71 was obtained from the 
solution for Ra = lo6, Pr = 0-71 in a single step, but to obtain a solution for Ra = lo5, Pr = 
lo-* required an intermediate solution at Ra = lo5, Pr = 3 x lo-*. 

It might be worth adding that in Olsen and Tuann’s study’ of the driven cavity problem, 
the greatest Reynolds number (defined by the velocity of the moving wall) for which 
solutions were readily obtained (3450) was of the same order as the greater Reynolds 
number quoted above. 

Needless to say, no difficulties were experienced in obtaining solutions for Pr = 10’ from 
those at Pr = 0-71 and the same Rayleigh number. The results for Pr = lo2 in Table VI 
suggest that for sufficiently high Pr the solution converges to a constant one. This is 
understandable in terms of equations (3) with left hand sides of zero, since sufficiently large 
Pr will be equivalent to neglect of the advective term of (3b) and change of Pr has no other 
effect on the system. 

6. CONCLUSIONS 

The stream function-vorticity approach to 2-dimensional incompressible viscous flow and 
convection has been found to work well provided that certain conditions are satisfied. First, 
the two boundary conditions for stream function must be applied directly, not through 
defining vorticity boundary values by approximate formulae employed iteratively. Direct 
application of the boundary conditions can be achieved by the finite element discretization 
and application of a displacement of the appropriate discrete equations. Second, the order of 
interpolation must be sufficient to allow both boundary conditions to be satisfied and still 
allow a measure of freedom in elements adjacent to the boundary. Finally, steady state 
solutions can rapidly be achieved by a fully coupled simultaneous procedure (Le. treating all 
variables as simultaneous unknowns) using the Newton-Raphson method. Solution proce- 
dures in which values for each variable are updated by solution of each equation in turn were 
not found to be successful. 

With the above conditions results have been obtained for a wide range of the two 
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independent parameters of the natural convection problem. The limits of the ability of the 
formulation to produce a steady state solution under variation of these two parameters were 
entirely consistent with the following assumption: that the method will always produce the 
solution when the flow is physically steady, but will not give a steady solution when the flow 
is physically unsteady. There are numerical methods that differ on the second of these 
criteria, as well as those that differ on the first. In particular it must be pointed out that with 
the present method there is no need for upwind differencing, asymmetric basis functions, or 
exponential interpolation, etc. 

For two dimensional problems the formulation has a measure of economy over the 
primitive variables approach which has been adopted by most finite element workers, as well 
as having the advantage of satisfying continuity exactly. A quantitative comparison with the 
fourth order equation method of Olson and Tuann’ would be of interest. Two avenues for 
improvement of the present method would be towards employing Hermitian elements (i.e. 
derivatives as well as variable values continuous between elements), and towards use of an 
automatic mesh adjustment algorithm whereby the mesh is modified according to the 
solution found in the iteration process. The latter would be particularly valuable for the 
middle and higher Rayleigh numbers where the action is very unevenly distributed. 

Comparison of results with those of two finite difference workers using finer meshes show 
some differences. It is suggested that the differences probably arise from the different 
treatment of the boundary conditions. 

More detailed conclusions are as follows. The practice of iteratively defining boundary 
vorticity from the stream function field along the boundary normal is viewed as likely to lead 
to considerable error. It should be noted that the method of direct application of boundary 
conditions employed here can be used with segregated solution procedures as well as 
simultaneous ones, since it requires only movement of discrete equations after the finite 
element discretization has been applied. 

The impermeable, or fixed stream function, boundary condition is effectively satisfied 
exactly in the formulation, but the no-slip or normal gradient condition is only satisfied as 
part of the approximation. The boundary slip velocities in obtained solutions can of course 
be examined, and these give a very useful idea of the adequacy of the local mesh fineness. 

Third order elements were used for the work reported here. For stream function this has 
some equivalence to the second order interpolation for velocity commonly used in primitive 
variable approaches, although of course the equivalence stops there. 

Extension to more general geometries from the square cavity modelled here is obviously 
straightforward with the isoparametric finite element method. However the program used 
here needs modifying to full frontal solution for much larger problems. 
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